Errors in reported degrees and respondent driven sampling: Implications for bias☆
نویسندگان
چکیده
BACKGROUND Respondent Driven Sampling (RDS) is a network or chain sampling method designed to access individuals from hard-to-reach populations such as people who inject drugs (PWID). RDS surveys are used to monitor behaviour and infection occurence over time; these estimations require adjusting to account for over-sampling of individuals with many contacts. Adjustment is done based on individuals' reported total number of contacts, assuming these are correct. METHODS Data on the number of contacts (degrees) of individuals sampled in two RDS surveys in Bristol, UK, show larger numbers of individuals reporting numbers of contacts in multiples of 5 and 10 than would be expected at random. To mimic these patterns we generate contact networks and explore different methods of mis-reporting degrees. We simulate RDS surveys and explore the sensitivity of adjusted estimates to these different methods. RESULTS We find that inaccurate reporting of degrees can cause large and variable bias in estimates of prevalence or incidence. Our simulations imply that paired RDS surveys could over- or under-estimate any change in prevalence by as much as 25%. These are particularly sensitive to inaccuracies in the degree estimates of individuals with who have low degree. CONCLUSIONS There is a substantial risk of bias in estimates from RDS if degrees are not correctly reported. This is particularly important when analysing consecutive RDS samples to assess trends in population prevalence and behaviour. RDS questionnaires should be refined to obtain high resolution degree information, particularly from low-degree individuals. Additionally, larger sample sizes can reduce uncertainty in estimates.
منابع مشابه
Modelling the Effect of Differential Recruitment on the Bias of Estimators for Respondent-Driven Sampling
Respondent Driven Sampling has previously been modelled as a random walk on a network. In this document we show that this model can be used to encompass within-group differential recruitment, and examine the implications for bias of several common estimators.
متن کاملنمونهگیری پاسخگو محور در مقایسه با سایر روشهای نمونهگیری از جوامع پنهان
Sampling hidden populations is challenging due to the lack of convenience statistical frames. Since most populations exposed to special diseases are hidden and hard to reach, sampling methods that produce representative and efficient samples from the populations have become a study subject for researches all over the world. Because of the unknown probability of selecting samples in conventional...
متن کاملInference for the Visibility Distribution for Respondent-Driven Sampling
Respondent-Driven Sampling (RDS) is used throughout the world to estimate prevalences and population sizes for hard-to-reach populations. Although RDS is an effective method for enrolling people from key populations (KPs) in studies, it relies on an unknown sampling mechanism and thus each individual’s inclusion probability is unknown. Current estimators rely on a participant’s network size (de...
متن کاملA response to the use of respondent-driven sampling in urban Indigenous populations.
Critical review and evaluation of the article “Mental health and substance use in an urban First Nations population in Hamilton, Ontario” by Firestone et al. brought an important issue to the forefront, namely the use of respondent-driven sampling for participant recruitment. The use of respondent-driven sampling during the study’s recruitment period raises questions about the presence of any u...
متن کاملSample Size Calculations for Population Size Estimation Studies Using Multiplier Methods With Respondent-Driven Sampling Surveys
BACKGROUND While guidance exists for obtaining population size estimates using multiplier methods with respondent-driven sampling surveys, we lack specific guidance for making sample size decisions. OBJECTIVE To guide the design of multiplier method population size estimation studies using respondent-driven sampling surveys to reduce the random error around the estimate obtained. METHODS Th...
متن کامل